Abstract

A time-average technique was developed to measure the unsteady and turbulent free convection heat transfer in tall vertical enclosure using a Mach-Zehnder interferometer. The method used a digital high speed camera to obtain the time-averaged heat transfer rates. Optical heat transfer measurements were made in a differentially heated vertical cavity with isothermal walls. The cavity widths (distance between the plates) were L = 12.7, 32.3, 40, and 56.2 mm. The corresponding Rayleigh numbers were about 3X10[superscript] 3, 5 X 10⁴, 1 X 10⁵, 2.7. X 10⁵, respectively and the enclosure aspect ratio ranged from A=18 to 76. The test fluid was air and the temperature differential was about 15 K for all the measurements. Finite fringe interferograms were taken with a high speed camera. Interferograms of the fluctuating temperature field were captured for ten seconds at a frequency of 100Hz. These images were enhanced and processed using MATLAB to measure the local time-averaged heat transfer rate. This time-averaged heat flux was measured at many locations along the vertical cavity walls in order to obtain the spatial average. To validate the proposed technique, the average Nusselt number was compared to measured values and correlations from the literature. In both laminar and turbulent flow conditions, the current measurements compared well with the ElSherbiny correlation.

Highlights

Read more

Summary

Introduction

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.