Abstract

Some previous works show that symmetric fixed- and variable-stepsize linear multistep methods for second-order systems which do not have any parasitic root in their first characteristic polynomial give rise to a slow error growth with time when integrating reversible systems. In this paper, we give a technique to construct variable-stepsize symmetric methods from their fixed-stepsize counterparts, in such a way that the former have the same order as the latter. The order and symmetry of the integrators obtained is proved independently of the order of the underlying fixed-stepsize integrators. As this technique looks for efficiency, we concentrate on explicit linear multistep methods, which just make one function evaluation per step, and we offer some numerical comparisons with other one-step adaptive methods which also show a good long-term behaviour.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.