Abstract

The anatomy and development of cranial and facial sutures have been studied in detail using histological sections, 2D radiographs and more recently CT imaging. However, little attention has been paid to evaluating and quantifying the connectivity of these thin cortical bone articulations. More recent technological advances such as micro-CT imaging has the potential to be used to provide quantitative measurements of 3D connectivity in bony articulations. This study presents a new technique for quantifying the connectivity of bony projections inside cranial and facial sutures using a combination of skeletonization, thinning algorithms and 3D intensity mapping. The technique is demonstrated in five sutures through semi-automated analysis and image processing of μCT scans. In the sagittal, coronal and frontozygomatic sutures an average bone connectivity of 6.6–11.6% was found with multiple bony projections providing an interlocking structure between adjacent bones. Much higher bone connectivity was present in the zygomaticotemporal and zygomaticomaxillary sutures (22.7–37.4%) with few bony projections. This method combining μCT scanning and image processing techniques was successfully used to quantify the connectivity of thin bone articulations and allowed detailed assessment of sutural fusion in 3D. The wider application of this technique may allow quantification of connectivity in other structures, in particular fracture healing of long bones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.