Abstract
A non-stochastic state-space identification algorithm for linear time-invariant systems is modified for use with periodic linear systems. Like its predecessor, the modified algorithm forms block Hankel matrices from input-output data and uses the singular value decomposition of these Hankel matrices to compute state vector sequences. The state vector sequences are then used to compute system matrices associated with the periodic linear system by solving an (overdetermined) linear system. The modifications to the original algorithm are as follows. First, the periodic system of period p is viewed as p separate time-invariant period-mapped systems. This technique allows the structure of a periodic Hankel matrix to be deduced, which in turn allows a state vector sub-sequence for the periodic system to be computed. When a complete state vector sequence is computed, it is used directly to construct the periodic state-space models. Second, similarities in the structure of each of the periodic Hankel matrices ass...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.