Abstract

Techniques for reducing computation time in 3D photon dose calculations are addressed with specific emphasis given to the convolution/superposition approach. A single polyenergetic superposition model calculating absorbed dose per incident photon fluence was developed in terms of TERMA and a total energy deposition kernel (a total point spread function). A novel approach was devised for reducing calculation time. The method, named the CF method, was based on the use of a conventional, fast model (here a modified power-law method was used) for the generation of 3D dose distributions on a fine dose matrix. Superposition calculations were carried out on a coarse matrix and calculation speed was increased simply by reducing the number of calculations. A set of correction factors was derived on the coarse grid from the ratio of the dose values from superposition to those from the conventional algorithm. These were interpolated onto the fine matrix and used to modify the dose calculation from the conventional algorithm. The method was tested in a worst-case example where large dose gradients were present and in a clinically relevant irradiation geometry. It is shown that the time required for the generation of a 3D matrix with superposition can be reduced by at least a factor of 100 with no significant loss in accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.