Abstract

There are numerous articles wherein mathematical models of various parts of an in situ hearing aid have been reported. Such parts include, for example, the microphone, receiver, cylindrical tubes carrying sound to the eardrum and out through the earmold vent, and the external path from the vent back to the microphone. This article extends these earlier works to include the hearing-aid amplifier. In particular, a mathematical technique for characterizing the amplifier in combination with the receiver is reported. Cascade parameters of a two-port model of one particular amplifier/receiver combination are obtained by this method. The cascade-parameter data and the method of obtaining this data are verified by two different experimental procedures. One procedure involves both computing and measuring the input driving-point impedance of the amplifier/receiver combination. In the second procedure, the amplifier-to-eardrum transfer function of a hearing aid incorporating this same amplifier/receiver combination and mounted on an artificial ear is both computed and measured. Experimental and computed values of this transfer function for three different earmold geometries are in reasonably close agreement. The amplifier/receiver model reported herein will be used in future studies of acoustic feedback in hearing aids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call