Abstract

Increasing the coercive force of a magnetic recording medium normally improves high density digital performance. However, in rigid disk systems, the head is not in intimate contact with the disk. In addition, the ferrites employed as head materials have much lower saturation magnetization than the metals normally used in other types of heads. Under these conditions, the head field may be inadequate to fully saturate recording media of higher than normal coercive force. In the development of the latest disk products, increasing the coercive force has not improved performance but has increased overwrite modulation. This situation has not been improved by increasing write current amplitude. Pole tip and core saturation of the record head has been suspected as the cause of these observations. This paper describes a method of characterizing saturation effects in low inductance heads such as those used with rigid disks. Evidence of the deterioration of performance due to pole tip and core saturation is shown from isolated pulse measurements on a rigid disk with NiZn and MnZn ferrite heads.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call