Abstract
Abstract A technique called quantile integration is proposed for the estimation of marginal posterior densities arising in Bayesian models having hierarchical representations. The method is based on approximating marginal densities as mixtures of conditional densities, where the conditioning variables are selected deterministically from the mixing distributions. The form of the approximation makes it easy to implement, and the resulting approximations are computationally efficient to obtain. The technique leads to particularly simple approximations for the predictive and posterior densities in Kalman filter or state-space models, and specific formulas are provided for the special case in which innovations belong to location-scale families. Other applications include a hierarchical empirical Bayes model for Poisson rates and a hierarchical linear model with exchangeable regression parameters and unknown variance components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.