Abstract

A finite element method is applied to solve the two-dimensional turbulent channel flows. Based on the fractional step techniques, the momentum and the k-ϵ equations are split into convection and diffusion equations. The convection equations are solved by the second-order Taylor-Galerkin finite element method, which can overcome the spurious oscillations with minimal artificial diffusion, and the diffusion equations are solved by the fully explicit Galerkin method. Since the same order interpolation is used for the velocity, pressure and turbulent quantities, the present method is computationally efficient. The sudden expansion flow and the obstructed turbulent channel flow are studied. The results are in good agreement with experimental observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.