Abstract

Thermal energy storage incorporated into the fabric of buildings could provide the opportunity to significantly improve the use of energy from renewable sources and take maximum advantage of off-peak electricity tariffs. If this kind of thermal storage is integrated into the structure of the building itself, the internal space of the building is not compromised and may be more cost-effective. In this paper, the authors present a taxonomy of currently available fabric-integrated thermal energy storage solutions based on a review of existing literature. The aim of this study is to map the range of extant design solutions for fabric-integrated thermal storage in buildings and detect any omissions. The taxonomy presented in this paper takes into consideration the interaction between the storage of thermal energy and the thermal zones of buildings, the methods and medium used to store thermal energy, and the storage temperature. Also considered here are the different architectural integration options, which the authors present through a catalogue of possible thermal energy storage locations. This paper also argues that an active storage system provides a means for energy systems in buildings to actively participate in future energy networks, which may require active load management to accommodate a high proportion of renewable technologies. Active storage allows the charge and discharge of the thermal energy stored within buildings when the energy is available and/or economically valuable. This kind of active participation is not possible with passive storage techniques.

Highlights

  • This paper argues that an active storage system provides a means for energy systems in buildings to actively participate in future energy networks, which may require active load management to accommodate a high proportion of renewable technologies

  • The integration of Thermal Energy Storage (TES) in buildings can temporally decouple when devices such as a heat pumps or chillers operate and when the heating or cooling is provided to the end user; this can radically alter the timing of a buildings’ energy demand, potentially ­enhancing the use of renewable energy resources (Lehmann et al, 2007)

  • Corresponding author: Maria Manuela Marinho de Castro (m.marinhodecastro@gsa.ac.uk) floor area is at a premium and the space penalty associated with conventional technologies such as hot water storage can act as a barrier to its uptake

Read more

Summary

Introduction

The integration of Thermal Energy Storage (TES) in buildings can temporally decouple when devices such as a heat pumps or chillers operate and when the heating or cooling is provided to the end user; this can radically alter the timing of a buildings’ energy demand, potentially ­enhancing the use of renewable energy resources (Lehmann et al, 2007). One of the most significant is competition for space–as dwelling sizes reduce (Robert-Hughes, 2011), floor area is at a premium and the space penalty associated with conventional technologies such as hot water storage can act as a barrier to its uptake. This problem becomes more acute if the operation of future networks necessitates the need for heat to be stored over longer time periods than is done at present (Reynders et al, 2017). Storage in the future may need to migrate away from the traditional hot water tank at seen at present, towards media such as phase-change materials and storage that makes better use of the existing space and thermal mass in and around buildings, including large scale community storage

Objectives
Methods
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.