Abstract

Conventional approaches to query expansion (QE) rely on the integration of an unstructured corpus and probabilistic rules for the extraction of candidate expansion terms. These methods do not consider search query semantics, thereby resulting in ineffective retrieval of information. The semantic approaches for QE overcome this limitation, whereby a search query is expanded with meaningful terms that accord with user information needs. This paper surveys recent approaches to semantic QE that employ different models and strategies and leverages various knowledge structures. We organize these approaches into a taxonomy that includes linguistic methods, ontology-based methods, and mixed-mode methods. We also discuss the strengths and limitations of each type of semantic QE method. In addition, we evaluate various semantic QE approaches in terms of knowledge structure utilization, corpus collection, baseline model adaptation, and retrieval performance. Finally, future directions in exploiting personalized social information and multiple ontologies for semantic QE are suggested.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.