Abstract
Fractional differentials provide more accurate models of systems under consideration. In this paper, approximation techniques based on the shifted Legendre-tau idea are presented to solve a class of initial-boundary value problems for the fractional diffusion equations with variable coefficients on a finite domain. The fractional derivatives are described in the Caputo sense. The technique is derived by expanding the required approximate solution as the elements of shifted Legendre polynomials. Using the operational matrix of the fractional derivative the problem can be reduced to a set of linear algebraic equations. From the computational point of view, the solution obtained by this method is in excellent agreement with those obtained by previous work in the literature and also it is efficient to use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.