Abstract
The HIV-1 TAT peptide has been used extensively for directing the intracellular delivery of an assortment of cargo, including DNA, liposomes and macromolecules. For protein delivery, a variety of TAT-fusion proteins have been described which link the TAT coding sequence to the protein coding sequence of interest. Streptavidin represents a potentially useful TAT-fusion protein because it could be used to deliver a wide array of biotinylated cargo. Here we have characterized a TAT-streptavidin (TAT-SA) fusion protein, which retains the ability to bind biotinylated cargo while directing their efficient cellular uptake. Fluorescence activated cell sorting (FACS) analysis and confocal microscopy characterization showed that TAT-SA is internalized by Jurkat T-cells and NIH 3T3 cells alone and when complexed to phycoerythrin, whereas the native streptavidin is not. Additionally, biotinylated alkaline phosphatase is successfully internalized and retains its activity when complexed to TAT-SA and incubated with Jurkat T-cells. Confocal microscopy suggested, however, that internalized TAT-SA and TAT-SA complexes were largely compartmentalized in vesicular compartments, rather than freely diffusing in the cytoplasmic compartment. To effect cytoplasmic delivery, the endosomal releasing polymer, poly(propylacrylic acid) (PPAA), was biotinylated and complexed to TAT-SA. Endosomal release and cytoplasmic delivery of fluorescently labeled TAT-SA complexes with PPAA was shown by the diffuse distribution of fluorescent protein in the cytoplasm. Taken together, these results demonstrate that TAT-SA can be used to direct intracellular delivery of large biotinylated cargo to intracellular compartments and that biotinylated PPAA can direct cytoplasmic delivery where desired.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.