Abstract

Although theories of domestication have suggested that dogs evolved a greater capacity for tolerant and cooperative behaviour compared to their wild wolf cousins, the differences between wolves’ and free-ranging dogs’ social ecology, with wolves relying more on conspecific cooperation than dogs, would rather predict the opposite. In a cooperative task involving joint action on a rope to pull a tray forward, wolves systematically outperformed dogs. The dogs’ failure appeared largely due to tolerance issues, i.e. one partner avoiding interacting with the apparatus, when the other was engaged with it, rather than cognitive limitations. To verify this, in the current study we trained the dominant partner to become an ‘expert’ on the task thereby potentially enhancing their understanding that they ‘needed the partner to succeed’. Indeed both the duration of co-action on the apparatus and the success rate of dyads composed of an expert and an inexperienced dog was higher than dyads composed of two inexperienced partners. Nevertheless the dogs’ performance was substantially poorer than that of wolf dyads with equivalent experience, highlighting that despite the facilitating effect of the ‘expert’, cooperation on this task did not come easily to dogs. For both dogs and wolves, cooperation was facilitated by the closeness of the affiliative bond between individuals, but opposite rank effects emerged. Dogs further apart in rank were more successful co-operators, whereas in wolves, animals closer in rank had a higher cooperative success. The results further highlight the importance of the different socio-ecologies of wolves and dogs in understanding their behaviour.

Highlights

  • Cooperative problem solving, defined as two individuals coordinating their actions to successfully solve a task which cannot be solved alone, has been experimentally investigated in a wide variety of species and one of the most popular methods has been the ‘loose string task’, in which two individuals are given the possibility of simultaneously pulling on two rope ends to move a baited tray within reach

  • In a cooperative string pulling task, after an initial individual training phase, pet dogs were able to coordinate their actions with a conspecific and a human partner in the test condition, and subjects were even capable of tolerating short delays suggesting some understanding that they needed the partner to succeed[17]

  • Results showed that there was an effect of both dyad composition and species (GLM: χ2 = 9.9, p = 0.002), but no interaction between these two variables (GLM: χ2 = 0.39, p = 0.533)

Read more

Summary

Introduction

Cooperative problem solving, defined as two individuals coordinating their actions to successfully solve a task which cannot be solved alone, has been experimentally investigated in a wide variety of species and one of the most popular methods has been the ‘loose string task’, in which two individuals are given the possibility of simultaneously pulling on two rope ends to move a baited tray within reach (first used with chimpanzees[1,2,3,4] macaques[5]; ravens[6]; rooks[7], elephants[8]; grey parrots[9]; kea[10]). The closeness of social bonds (in terms of affiliative interactions exchanged) as well as tolerance around a food source and rank have been shown to affect cooperative success in string-pulling tasks in ravens[6], chimpanzees[3], hyenas[11], macaques[5] and wolves[13]. In a cooperative string pulling task, after an initial individual training phase, pet dogs were able to coordinate their actions with a conspecific and a human partner in the test condition, and subjects were even capable of tolerating short delays (of approximately 2 seconds with conspecifics and in 20% of trials they could wait 15 seconds for the human partner) suggesting some understanding that they needed the partner to succeed[17]. One dog at a time interacted with the ropes and the tray, whilst the other typically stood by, or wandered off

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.