Abstract

Task allocation is crucial for autonomous underwater vehicle (AUV) collaboration in multi-AUV maritime search and rescue missions. In real projects, there are possible target areas existing in task areas, which are not expected to be divided. Motivated by such a special situation, this paper proposes an area partitioning method to allocate the task to multiple AUVs and maintain the possible target area as a whole. First, the spatial structure of the task area is defined by the spiked Morse decomposition, which divides the task area according to a set of angles. Then, we perform a variational transformation to determine the optimal angles using the AUV order. Next, a customized backtracking method is introduced to determine the optimal AUV order which divides the task area among the multiple AUVs without disturbing the possible target areas. The proposed methodology is validated under various challenging scenarios using a different number of AUVs. The empirical results show that the divided possible target areas and workload variance were superior to the comparison methods. This indicates that the proposed method can generate stable solutions that effectively reduce the segmentation of possible target areas and keep the workload of the multiple AUVs balanced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.