Abstract
The spatiotemporal dynamics of specific mRNA molecules are difficult to image and detect inside living cells, and this has been a significant challenge for the chemical and biomedical communities. To solve this problem, we have developed a targeted, self-delivered, and photocontrolled aptamer-based molecular beacon (MB) for intracellular mRNA analysis. An internalizing aptamer connected via a double-stranded DNA structure was used as a carrier probe (CP) for cell-specific delivery of the MB designed to signal target mRNA. A light activation strategy was employed by inserting two photolabile groups in the CP sequence, enabling control over the MB's intracellular function. After the probe was guided to the target cell via specific binding of aptamer AS1411 to nucleolin on the cell membrane, light illumination released the MB for mRNA monitoring. Consequently, the MB is able to perform live-cell mRNA imaging with precise spatiotemporal control, while the CP acts as both a tracer for intracellular distribution of the MB before photoinitiation and an internal reference for mRNA ratiometric detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.