Abstract

Alcohol abuse induces the expression of inflammatory mediators by activating the immune receptors to trigger neuroinflammation and brain damage; however, therapies that reduce neuroimmune system activation may protect against alcohol's damaging effects. Curcuminoids possess anti-inflammatory properties but suffer from low bioavailability; therefore, we designed a new receptor-targeted biodegradable star-shaped crosslinked polypeptide polymer that bears propargylamine moieties and bisdemethoxycurcumin (StClPr-BDMC-ANG) as an enhanced anti-inflammatory therapeutic that penetrates the blood–brain-barrier and ameliorates alcohol-induced neuroinflammation. StClPr-BDMC-ANG administration maintains the viability of primary glia and inhibits the ethanol-induced upregulation of crucial inflammatory mediators in the prefrontal and medial cortex in a mouse model of chronic ethanol consumption. StClPr-BDMC-ANG treatment also suppresses the ethanol-mediated downregulation of microRNAs known to negatively modulate neuroinflammation in the brain cortex (miRs 146a-5p and let-7b-5p). In summary, our results demonstrate the attenuation of alcohol-induced neuroinflammation by an optimized and targeted polypeptide-based nanoconjugate of a curcuminoid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call