Abstract

Here we have developed and validated an original LC-MS/MS SRM procedure flexible enough to quantitatively screen collagen types I-V in copies of the same type of stromal matrix prepared with different protocols of cell removal to retain the native 3D architecture of the ECM. In a first step, identification of tryptic sequences exclusive to specific chains (either α1 or α2) of mammalian collagen standards types I-V was pursued using a combination of LC-LIT-Orbitrap XL and LC-MS/MS SRM analyses. In a second step, the adult male rat thyroid was decellularized using three different protocols specifically set for engineering of bioartificial 3D thyroid organoids. In a third step, DNA analysis of the decellularized 3D thyroid stroma was pursued to exclude contamination by cell nuclear debris. In a final step, collagen standards and 3D thyroid matrices were digested using the same mechanical / enzymatic protocol, and quantitative profiles of collagen types I-V ensued using comparisons of ionic intensities between tryptic peptides of collagen standards and matrices, as derived from targeted LC-MS/MS SRM analysis. Collectively, the procedure allowed for detection and quantitation of collagen types I-V at a femtomolar level in thyroid gland stromal matrices initially maintaining their original 3D architecture, tryptically digested through a method common to collagen standards and thyroid ECM, with satisfactory reproducibility of results, moderate procedural cost, and limited analytical time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call