Abstract
Affordable and effective antiviral therapies are needed worldwide, especially against agents such as dengue virus that are endemic in underserved regions. Many antiviral compounds have been studied in cultured cells but are unsuitable for clinical applications due to pharmacokinetic profiles, side effects, or inconsistent efficacy across dengue serotypes. Such tool compounds can, however, aid in identifying clinically useful treatments. Here, computational screening (Rapid Overlay of Chemical Structures) was used to identify entries in an in silico database of safe-in-human compounds (SWEETLEAD) that display high chemical similarities to known inhibitors of dengue virus. Inhibitors of the dengue proteinase NS2B/3, the dengue capsid, and the host autophagy pathway were used as query compounds. Three FDA-approved compounds that resemble the tool molecules structurally, cause little toxicity, and display strong antiviral activity in cultured cells were selected for further analysis. Pyrimethamine (50% inhibitory concentration [IC50] = 1.2 μM), like the dengue proteinase inhibitor ARDP0006 to which it shows structural similarity, inhibited intramolecular NS2B/3 cleavage. Lack of toxicity early in infection allowed testing in mice, in which pyrimethamine also reduced viral loads. Niclosamide (IC50 = 0.28 μM), like dengue core inhibitor ST-148, affected structural components of the virion and inhibited early processes during infection. Vandetanib (IC50 = 1.6 μM), like cellular autophagy inhibitor spautin-1, blocked viral exit from cells and could be shown to extend survival in vivo Thus, three FDA-approved compounds with promising utility for repurposing to treat dengue virus infections and their potential mechanisms were identified using computational tools and minimal phenotypic screening.IMPORTANCE No antiviral therapeutics are currently available for dengue virus infections. By computationally overlaying the three-dimensional (3D) chemical structures of compounds known to inhibit dengue virus over those of compounds known to be safe in humans, we identified three FDA-approved compounds that are attractive candidates for repurposing as antivirals. We identified targets for two previously identified antiviral compounds and revealed a previously unknown potential anti-dengue compound, vandetanib. This computational approach to analyze a highly curated library of structures has the benefits of speed and cost efficiency. It also leverages mechanistic work with query compounds used in biomedical research to provide strong hypotheses for the antiviral mechanisms of the safer hit compounds. This workflow to identify compounds with known safety profiles can be expanded to any biological activity for which a small-molecule query compound has been identified, potentially expediting the translation of basic research to clinical interventions.
Highlights
Affordable and effective antiviral therapies are needed worldwide, especially against agents such as dengue virus that are endemic in underserved regions
Three that exhibited the strongest antiviral activities in cell culture without evidence of cytotoxicity were selected for further study: pyrimethamine, niclosamide, and vandetanib
With no antiviral treatments currently available for patients suffering from dengue virus infection, there is a great unmet need for therapeutics targeting this disease
Summary
Affordable and effective antiviral therapies are needed worldwide, especially against agents such as dengue virus that are endemic in underserved regions. Many antiviral compounds have been studied in cultured cells but are unsuitable for clinical applications due to pharmacokinetic profiles, side effects, or inconsistent efficacy across dengue serotypes Such tool compounds can, aid in identifying clinically useful treatments. Three FDA-approved compounds with promising utility for repurposing to treat dengue virus infections and their potential mechanisms were identified using computational tools and minimal phenotypic screening. We identified targets for two previously identified antiviral compounds and revealed a previously unknown potential antidengue compound, vandetanib This computational approach to analyze a highly curated library of structures has the benefits of speed and cost efficiency. It leverages mechanistic work with query compounds used in biomedical research to provide strong hypotheses for the antiviral mechanisms of the safer hit compounds. To any biological activity for which a small-molecule query compound has been identified, potentially expediting the translation of basic research to clinical interventions
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.