Abstract

A target-triggered strand displacement-assisted target recycling based on carbon dots-based fluorescent probe and mesoporous silica nanoparticles@polydopamine (MSNs@PDA) was established to detect miRNA. The surface of MSNs rich in mesopores was coated with a layer of PDA, which can adsorb and quench the fluorescence of single-stranded Fuel DNA with fluorescent carbon dots (CDs) modified at the end through fluorescence resonance energy transfer (FRET). After adding double-stranded DNA-gold nanoparticles (dsDNA-AuNPs) and target let-7a, it will trigger two toehold-mediated strand displacement reactions (TSDR), leading to the recovery of fluorescence and the recycling of target let-7a (excitation wavelength: 380nm; emission wavelength: 458nm). The recovery value of fluorescence is proportional to the logarithm of the target microRNA let-7a concentration, thus realizing the sensitivity amplification detection of disease markers. The MSNs@PDA@Fuel DNA-CDs/dsDNA-AuNPs nanoplatform based on the strategy of "on-off-on" and TSDR cyclic amplification may hold great potential as an effective and safe nanoprobe for accurate fluorescence imaging of diseases related to miRNA with low abundances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call