Abstract

Fusaric acid is a secondary metabolite produced by various Fusarium fungi, present with relatively high incidence in Fusarium-contaminated foods. It was already described as phytotoxic and cytotoxic. However, the understanding of its molecular mechanisms is still fragmentary and further data are needed to ensure an informed assessment of the risk related to its presence in food. This work applied an integrated in silico/in vitro approach to reveal novel potential biological activities of fusaric acid and to investigate the underpinning mechanisms. An in silico reverse screening was used to identify novel biological targets for fusaric acid. Computational results indicated as target protein kinase-A, which was confirmed with biochemical cell-free assays providing evidence of its actual inhibitory potential. Cell-based experiments on intestinal cells (HCEC-1CT cells) identified the mitochondrial network and cell membranes as potentially affected organelles, possibly resulting from PKA inhibition. The integration of 3D molecular modeling supported the plausibility of fusaric acid-dependent inhibition. From the hazard identification perspective, considering the Low Observed Adverse Effect Level described here (0.1 mM) and the possible level of contamination in food, fusaric acid might raise concern from a food safety standpoint and the gastrointestinal tract was described as a meaningful system to investigate with priority.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.