Abstract

Spinal cord injury (SCI) is a serious disease of the central nervous system that is associated with a poor prognosis; furthermore, existing clinical treatments cannot restore nerve function in an effective manner. Inflammatory responses and the increased production of reactive oxygen species (ROS) in the microenvironment of the lesion are major obstacles that inhibit the recovery of SCI. Small extracellular vesicles (sEVs), derived from mesenchymal stem cells, are suitable options for cell-free therapy and have been shown to exert therapeutic effects in SCI, thus providing a potential strategy for microenvironment regulation. However, the effective retention, controlled release, and integration of small extracellular vesicles into injured spinal cord tissue are still a major challenge. Herein, we fabricated an N-acryloyl glycinamide/gelatin methacrylate/Laponite/Tannic acid (NAGA/GelMA/LPN/TA, NGL/T) hydrogel with sustainable sEV release (sEVs-NGL/T) to promote the recovery of motor function after SCI. The newly developed functional sEVs-NGL/T hydrogel exhibited excellent antioxidant properties in an H2O2-simulated peroxidative microenvironment in vitro. Implantation of the functional sEVs-NGL/T hydrogel in vivo could encapsulate sEVs, exhibiting efficient retention and the sustained release of sEVs, thereby synergistically inducing significant restoration of motor function and urinary tissue preservation. These positive effects can be attributed to the effective mitigation of the inflammatory and ROS microenvironment. Therefore, sEVs-NGL/T therapy provides a promising strategy for the sEV-based therapy in the treatment of SCI by comprehensively regulating the pathological microenvironment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.