Abstract

We consider a tandem queueing system with single-server first station and multi-server second station. The input flow at Station 1 is described by the BMAP (batch Markovian arrival process). Customers from this flow are considered as non-priority customers. Customers of an arriving group, which meet a busy server, go to the orbit of infinite size. From the orbit, they try their luck in exponentially distributed random time. Service times at Station 1 are independent identically distributed random variables having an arbitrary distribution. After service at Station 1 a non-priority customer proceeds to Station 2. The service time by a server of Station 2 is exponentially distributed. Besides customers proceeding from Station 1, an additional MAP flow of priority customers arrives at Station 2 directly, not entering Station 1. If a priority customer meets a free server upon arrival, it starts service immediately. Else, it leaves the system forever. It is assumed that a few servers of Station 2 are reserved to serve the priority customers only. We calculate the stationary distribution and the main performance measures of the system. The problem of optimal design is numerically investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call