Abstract

BackgroundFreezing provokes severe yield losses to different fall-sown annual legumes. Understanding the molecular bases of freezing tolerance is of great interest for breeding programs. Medicago truncatula Gaertn. is an annual temperate forage legume that has been chosen as a model species for agronomically and economically important legume crops. The present study aimed to identify positional candidate genes for a major freezing tolerance quantitative trait locus that was previously mapped to M. truncatula chromosome 6 (Mt-FTQTL6) using the LR3 population derived from a cross between the freezing-tolerant accession F83005-5 and the freezing-sensitive accession DZA045-5.ResultsThe confidence interval of Mt-FTQTL6 was narrowed down to the region comprised between markers MTIC153 and NT6054 using recombinant F7 and F8 lines. A bacterial-artificial chromosome (BAC) clone contig map was constructed in an attempt to close the residual assembly gap existing therein. Twenty positional candidate genes including twelve C-repeat binding factor (CBF)/dehydration-responsive element binding factor 1 (DREB1) genes were identified from BAC-derived sequences and whole-genome shotgun sequences (WGS). CBF/DREB1 genes are organized in a tandem array within an approximately 296-Kb region. Eleven CBF/DREB1 genes were isolated and sequenced from F83005-5 and DZA045-5 which revealed high polymorphism among these accessions. Unique features characterizing CBF/DREB1 genes from M. truncatula, such as alternative splicing and large tandem duplication, are elucidated for the first time.ConclusionsOverall, twenty genes were identified as potential candidates to explain Mt-FTQTL6 effect. Their future functional characterization will uncover the gene(s) involved in freezing tolerance difference observed between F83005-5 and DZA045-5. Knowledge transfer for breeding improvement of crop legumes is expected. Furthermore, CBF/DREB1 related data will certainly have a large impact on research studies targeting this group of transcriptional activators in M. truncatula and other legume species.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-14-814) contains supplementary material, which is available to authorized users.

Highlights

  • Freezing provokes severe yield losses to different fall-sown annual legumes

  • Based on markers used in this study (Additional file 1), screened lines correspond to 9 different haplotypes; 7 of which carry recombination events within or next to Mt-FTQTL6 confidence interval (Figure 1)

  • Mt-FTQTL6 interval could be delineated to a smaller region of 0.4 cM between markers MTIC153 and NT6054 (Figure 1 and 2; Additional file 2)

Read more

Summary

Introduction

Freezing provokes severe yield losses to different fall-sown annual legumes. Understanding the molecular bases of freezing tolerance is of great interest for breeding programs. Most temperate plants can increase their freezing tolerance after exposure to low temperatures, a process called cold acclimation [1,2,3]. CBF/DREB1 genes play a key role in the regulation of the transcriptome during cold acclimation [4]. They belong to the AP2/EREBP family of transcription factors and were first isolated from Arabidopsis thaliana (L.) Heynh. CBF/DREB1 genes have been identified in numerous herbaceous and woody plant species [8,9,10,11] and different studies have reported their significant role in freezing tolerance [12,13,14,15,16]. The identification of the genes responsible for the natural freezing tolerance variation can enhance the breeding progress and subsequently the release of novel freezing-tolerant cultivars

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.