Abstract
It is a common nancial practice to estimate volatility from the sum of frequently-sampled squared returns. However market microstructure poses challenge to this estimation approach, as evidenced by recent empirical studies in nance. This work attempts to lay out theoretical grounds that reconcile continuous-time modeling and discrete-time samples. We propose an estimation approach that takes advantage of the rich sources in tick-by-tick data while preserving the continuous-time assumption on the underlying returns. Under our framework, it becomes clear why and where the \usual volatility estimator fails when the returns are sampled at the highest frequency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.