Abstract

Containerization, or OS-level virtualization has taken root within the computing industry. However, container utilization and its impact on performance and functionality within High Performance Computing (HPC) is still relatively undefined. This paper investigates the use of containers with advanced supercomputing and HPC system software. With this, we define a model for parallel MPI application DevOps and deployment using containers to enhance development effort and provide container portability from laptop to clouds or supercomputers. In this endeavor, we extend the use of Sin- gularity containers to a Cray XC-series supercomputer. We use the HPCG and IMB benchmarks to investigate potential points of overhead and scalability with containers on a Cray XC30 testbed system. Furthermore, we also deploy the same containers with Docker on Amazon's Elastic Compute Cloud (EC2), and compare against our Cray supercomputer testbed. Our results indicate that Singularity containers operate at native performance when dynamically linking Cray's MPI libraries on a Cray supercomputer testbed, and that while Amazon EC2 may be useful for initial DevOps and testing, scaling HPC applications better fits supercomputing resources like a Cray.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.