Abstract

Single-atom catalysts (SACs) exhibit distinct catalytic behavior compared with nano-catalysts because of their unique atomic coordination environment without the direct bonding between identical metal centers. How these single atom sites interact with each other and influence the catalytic performance remains unveiled as designing densely populated but stable SACs is still an enormous challenge to date. Here, a fabrication strategy for embedding high areal density single-atom Pt sites via a defect engineering approach is demonstrated. Similar to the synergistic mechanism in binuclear homogeneous catalysts, from both experimental and theoretical results, it is proved that electrons would redistribute between the two oxo-bridged paired Pt sites after hydrogen adsorption on one site, which enables the other Pt site to have high CO oxidation activity at mild-temperature. The dynamic electronic interaction between neighboring Pt sites is found to be distance dependent. These new SACs with abundant Pt-O-Pt paired structures can improve the efficiency of CO chemical purification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call