Abstract

In this work, we have analyzed the relative importance of secondary versus tertiary interactions in stabilizing and guiding protein folding. For this purpose, we have designed four different mutants to replace the α-helix of the GB1 domain by a sequence with strong β-hairpin propensity in isolation. In particular, we have chosen the sequence of the second β-hairpin of the GB1 domain, which populates the native conformation in aqueous solution to a significant extent. The resulting protein has roughly 30 % of its sequence duplicated and maintains the 3D-structure of the wild-type protein, but with lower stability (up to −5 kcal/mol). The loss of intrinsic helix stability accounts for about 80 % of the decrease in free energy, illustrating the importance of local interactions in protein stability. Interestingly enough, all the mutant proteins, included the one with the duplicated β-hairpin sequence, fold with similar rates as the GB1 domain. Essentially, it is the nature of the rate-limiting step in the folding reaction that determines whether a particular interaction will speed up, or not, the folding rates. While local contacts are important in determining protein stability, residues involved in tertiary contacts in combination with the topology of the native fold, seem to be responsible for the specificity of protein structures. Proteins with non-native secondary structure tendencies can adopt stable folds and be as efficient in folding as those proteins with native-like propensities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.