Abstract

A Tale of Two Oxidation States: Bacterial Colonization of Arsenic-Rich Environments

Highlights

  • Arsenic is most notorious as a poison threatening human health [1], recent studies suggest that arsenic species may have been involved in the ancestral taming of energy and played a crucial role in early stages in the development of life on Earth [2,3]

  • We investigated the metabolism of this metalloid in Herminiimonas arsenicoxydans, a representative organism of a novel bacterial genus widespread in aquatic environments

  • Examination of the genome sequence and experimental evidence revealed that it is remarkably capable of coping with arsenic

Read more

Summary

Introduction

Arsenic is most notorious as a poison threatening human health [1], recent studies suggest that arsenic species may have been involved in the ancestral taming of energy and played a crucial role in early stages in the development of life on Earth [2,3] Further speculations involve this metalloid in the colonization of extraterrestrial environments containing high arsenic levels [4,5]. Microorganisms are known to influence arsenic geochemistry by their metabolism, i.e., reduction, oxidation, and methylation [7,8], affecting both the speciation and the toxicity of this element. Arsenate (As[V]) is less toxic than arsenite (As[III]), but, paradoxically, resistance to As[V]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.