Abstract
A Tale of Two Oxidation States: Bacterial Colonization of Arsenic-Rich Environments
Highlights
Arsenic is most notorious as a poison threatening human health [1], recent studies suggest that arsenic species may have been involved in the ancestral taming of energy and played a crucial role in early stages in the development of life on Earth [2,3]
We investigated the metabolism of this metalloid in Herminiimonas arsenicoxydans, a representative organism of a novel bacterial genus widespread in aquatic environments
Examination of the genome sequence and experimental evidence revealed that it is remarkably capable of coping with arsenic
Summary
Arsenic is most notorious as a poison threatening human health [1], recent studies suggest that arsenic species may have been involved in the ancestral taming of energy and played a crucial role in early stages in the development of life on Earth [2,3] Further speculations involve this metalloid in the colonization of extraterrestrial environments containing high arsenic levels [4,5]. Microorganisms are known to influence arsenic geochemistry by their metabolism, i.e., reduction, oxidation, and methylation [7,8], affecting both the speciation and the toxicity of this element. Arsenate (As[V]) is less toxic than arsenite (As[III]), but, paradoxically, resistance to As[V]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.