Abstract

Huntington’s disease (HD) is an autosomal dominant disorder caused by a tandem repeat expansion encoding an expanded tract of glutamines in the huntingtin protein. HD is progressive and manifests as psychiatric symptoms (including depression), cognitive deficits (culminating in dementia), and motor abnormalities (including chorea). Having reached the twentieth anniversary of the discovery of the “genetic stutter” which causes HD, we still lack sophisticated insight into why so many HD patients exhibit affective disorders such as depression at very early stages, prior to overt appearance of motor deficits. In this review, we will focus on depression as the major psychiatric manifestation of HD, discuss potential mechanisms of pathogenesis identified from animal models, and compare depression in HD patients with that of the wider gene-negative population. The discovery of depressive-like behaviors as well as cellular and molecular correlates of depression in transgenic HD mice has added strong support to the hypothesis that the HD mutation adds significantly to the genetic load for depression. A key question is whether HD-associated depression differs from that in the general population. Whilst preclinical studies, clinical data, and treatment responses suggest striking similarities, there are also some apparent differences. We discuss various molecular and cellular mechanisms which may contribute to depression in HD, and whether they may generalize to other depressive disorders. The autosomal dominant nature of HD and the existence of models with excellent construct validity provide a unique opportunity to understand the pathogenesis of depression and associated gene-environment interactions. Thus, understanding the pathogenesis of depression in HD may not only facilitate tailored therapeutic approaches for HD sufferers, but may also translate to the clinical depression which devastates the lives of so many people.

Highlights

  • Huntington’s disease (HD) is a progressive neurodegenerative disorder that affects mood, cognition, and movement

  • Depression is notoriously heterogeneous in its presentation and these findings suggest possible dominance of a different cluster of symptoms in HD compared to most clinical depression patients

  • HD is disrupted, due to sequestration of its binding partner, cAMP response element-binding protein (CREB) binding protein (CBP). This is a common molecular pathology that the disease shares with depression, and one which, along with the target gene BDNF as described below, is likely to mediate the deficits in hippocampal neurogenesis which is the cellular consistently observed in animal models of HD

Read more

Summary

Introduction

Huntington’s disease (HD) is a progressive neurodegenerative disorder that affects mood, cognition, and movement. We will focus on depression as the major psychiatric manifestation of HD, discuss potential mechanisms of pathogenesis identified from animal models, and compare depression in HD patients with that of the wider gene-negative population.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.