Abstract

Infrastructure degradation in many post-industrial cities has increased the availability of potential mosquito habitats, including container habitats that support infestations of invasive disease-vectors. This study is unique in examining both immature and adult mosquito abundance across the fine-scale variability in socio-economic condition that occurs block-to-block in many cities. We hypothesized that abundant garbage associated with infrastructure degradation would support greater mosquito production but instead, found more mosquito larvae and host-seeking adults (86%) in parcels across the higher socio-economic, low-decay block. Aedes albopictus and Culex pipiens were 5.61 (p < 0.001) and 4.60 (p = 0.001) times more abundant, respectively. Most discarded (garbage) containers were dry during peak mosquito production, which occurred during the 5th hottest July on record. Containers associated with human residence were more likely to hold water and contain immature mosquitoes. We propose that mosquito production switches from rain-fed unmanaged containers early in the season to container habitats that are purposefully shaded or watered by mid-season. This study suggests that residents living in higher socioeconomic areas with low urban decay may be at greater risk of mosquito-borne disease during peak mosquito production when local container habitats are effectively decoupled from environmental constraints.

Highlights

  • More than 80% of the population of the United States lives in cities [1]

  • Our findings suggest greater Ae. albopictus survival to emergence and that adult mosquito production in the high-decay block is limited by persistence of aquatic habitat during an exceptionally hot and dry period

  • Vacant and abandoned buildings are a visible sign of neighborhood socioeconomic status in many post-industrial cities

Read more

Summary

Introduction

Over the past several decades eleven of the fifteen largest cities in the United States have experienced population declines [2] and similar urban declines have occurred globally [3]. Cities typically experience infrastructure abandonment and associated decay that can significantly alter the biotic environment [9]. This process of urban decay tends to exacerbate itself, causing increasing inequities in social, economic, and environmental conditions [4,10,11]. The abandonment of one building can adversely affect nearby residents, often leading to further abandonments and a number of other issues, including increased crime and exposure to disease vectors [14,15,16]

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call