Abstract
The turning points prediction scheme for future time series analysis based on past and present information is widely employed in the field of financial applications. In this research, a novel approach to identify turning points of the trading signal using a fuzzy rule-based model is presented. The Takagi–Sugeno fuzzy rule-based model (the TS model) can accurately identify daily stock trading from sets of technical indicators according to the trading signals learned by a support vector regression (SVR) technique. In addition, when new trading points are created, the structure and parameters of the TS model are constantly inherited and updated. To verify the effectiveness of the proposed TS fuzzy rule-based modeling approach, we have acquired the stock trading data in the US stock market. The TS fuzzy approach with dynamic threshold control is compared with a conventional linear regression model and artificial neural networks. Our result indicates that the TS fuzzy model not only yields more profit than other approaches but also enables stable dynamic identification of the complexities of the stock forecasting system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.