Abstract

We develop a Takagi-Sugeno (TS) fuzzy model of a concentric-tubes heat exchanger. The model is structured on fuzzy logic reasoning with sets of linguistic rules describing the dynamic characteristics of the thermal system. Using a system identification technique based on adaptive neural networks and subtractive clustering, the fuzzy rules are derived from experimental data of flow rates and fluid temperatures that were previously collected in a heat exchanger test facility. The accuracy of the resulting model is assessed by comparing predictions, versus experimental measurements, of the time-dependent response of the outlet hot- and cold-water temperatures under a step-change in the mass flow rate of the cold fluid. The results indicate that the TS fuzzy model is able to estimate the behavior of the physical system with predicting errors of the order of the experimental uncertainties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.