Abstract
Anode-free solid-state batteries (AFSSBs) are considered to be one of the most promising high-safety and high-energy storage systems. However, low Coulombic efficiency stemming from severe deterioration on solid electrolyte/current collector (Cu foil) interface and undesirable Li dendrite growth impede their practical application, especially when rigid garnet electrolyte is used. Here, an interfacial engineering strategy between garnet electrolyte and Cu foil is introduced for stable and highly efficient AFSSBs. By utilizing the high Li ion conductivity of LiC6 layer, interfacial self-adaption ability arising from ductile lithiated polyacrylic acid polymer layer and regulated Li deposition via Li-Ag alloying reaction, the garnet-based AFSSB delivers a stable long-term operation. Additionally, when combined with a commercial LiCoO2 cathode (3.1mAhcm-2 ), the cell also exhibits an outstanding capacity retention due to the tailored interface design. The strategies for novel AFSSBs architecture thus offer an alternative route to design next-generation batteries with high safety and high density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.