Abstract

The generation of condensed compounds in a deep eutectic solvent (DES) pretreatment has become a paramount factor that inhibits the further conversion of pretreated cellulose-rich substrate. This study proposed a novel three-constituent DES system for the value-added utilization of poplar residues by efficiently suppressing hemicellulose derived condensation reactions. The results showed that adding ethanol into the DES system could effectively deconstruct the recalcitrant structure of poplar residues, simultaneously hindering the condensed composition formation. Under optimum ethanol addition (30%), the maximum xylan and lignin removal of 87.94% and 90.99% could be achieved, with more than 90.47% of glucan being preserved. With this, the glucan enzymatic hydrolysis efficiency was remarkably improved to 100% under the pretreatment conditions of 100 °C for 60 min, which was 84.69 times higher than the regular DES-pretreated poplar residues (1.17%). The working mechanism of relieving condensation reactions was characterized by Py-GC–MS, NMR, SEM, FTIR, and others. The results demonstrated that the addition of ethanol could regulate the degradation/conversion pathway of hemicellulose and lignin precipitation, thus inhibit the formation of condensed compounds during the pretreatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call