Abstract

Zoonotic leishmaniases are a worldwide public health problem for which the development of effective vaccines remains a challenge. A vaccine against leishmaniases must be safe and affordable and should induce cross-protection against the different disease-causing species. In this context, the DNA vaccine pHisAK70 has been demonstrated to induce, in a murine model, a resistant phenotype against L. major, L. infantum, and L. amazonensis. Moreover, a chimeric multiepitope peptide, HisDTC, has been obtained by in silico analysis from the histone proteins encoded in the DNA vaccine and has showed its ability to activate a potent CD4+ and CD8+ T-cell protective immune response in mice against L. infantum infection. In the present study, we evaluated the plasmid DNA vaccine pHisAK70 in comparison with the peptide HisDTC (with and without saponin) against L. major and L. infantum infection. Our preliminary results showed that both formulations were able to induce a potent cellular response leading to a decrease in parasite load against L. infantum. In addition, the DNA candidate was able to induce better lesion control in mice against L. major. These preliminary results indicate that both strategies are potentially effective candidates for leishmaniases control. Furthermore, it is important to carry out such comparative studies to elucidate which vaccine candidates are the most appropriate for further development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.