Abstract

This study presents a custom-made in situ gelling polymeric precursor for cell encapsulation. Composed of poly((2-hydroxyethyl)methacrylate-co-(3-aminopropyl)methacrylamide) (P(HEMA-co-APM) mother backbone and RGD-mimicking poly(amidoamine) (PAA) moiteis, the comb-like structured polymeric precursor is tailored to gather the advantages of the two families of synthetic polymers, i.e., the good mechanical integrity of PHEMA-based polymers and the biocompatibility and biodegradability of PAAs. The role of P(HEMA-co-APM) in the regulation of the chemico-physical properties of P(HEMA-co-APM)/PAA hydrogels is thoroughly investigated. On the basis of obtained results, namely the capability of maintaining vital NIH3T3 cell line in vitro for 2 d in a 3D cell culture, the in vivo biocompatibility in murine model for 16 d, and the ability of finely tuning mechanical properties and degradation kinetics, it can be assessed that P(HEMA-co-APM)/PAAs offer a cost-effective valid alternative to the so far studied natural polymer-based systems for cell encapsulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.