Abstract

In the field of robotics, a major challenge is achieving high levels of autonomy with small vehicles that have limited mass and power budgets. The main motivation for designing such small vehicles is that compared to their larger counterparts, they have the potential to be safer, and hence be available and work together in large numbers. One of the key components in micro robotics is efficient software design to optimally utilize the computing power available. This paper describes the computer vision and control algorithms used to achieve autonomous flight with the [Formula: see text]30[Formula: see text]g tailless flapping wing robot, used to participate in the International Micro Air Vehicle Conference and Competition (IMAV 2018) indoor microair vehicle competition. Several tasks are discussed: line following, circular gate detection and fly through. The emphasis throughout this paper is on augmenting traditional techniques with the goal to make these methods work with limited computing power while obtaining robust behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.