Abstract

Plasma sprayed hydroxyapatite coatings were deposited onto mild steel substrates. A Taguchi L9 design of experiment protocol was used to optimise the coating process parameters. The effect of three factors: (i) power and secondary gas flow rate (X1), (ii) powder feed rate and carrier gas flow rate (X2), and (iii) stand-off distance (X3) on the coating responses was studied. The responses of the plasma sprayed hydroxyapatite coatings were evaluated in terms of porosity, deposition efficiency, microhardness, crystallinity, and surface roughness. A regression analysis established relationships between process parameters and responses. Higher power, lower powder feed rate and the middle stand-off distance of 11 cm lead to optimum attributes of low porosity, high deposition efficiency, high microhardness, high crystallinity, and high surface roughness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call