Abstract
Cholinergic neurons are ubiquitous and involved in various higher brain functions including learning and memory. Patients with Alzheimer's disease exhibit significant dysfunction and loss of cholinergic neurons. Meanwhile, such cholinergic deficits can be potentially relieved pharmacologically by increasing acetylcholine. Acetylcholinesterase (AChE) inhibitors have been used to improve cholinergic transmission in the brain for two decades and have proven effective for alleviating symptoms in the early stages of Alzheimer's disease. Therefore, the search for AChE inhibitors for drug development is ongoing. The enzymatic pocket of AChE has long been the target of several drug designs over the last two decades. The peripheral and catalytic sites of AChE are simultaneously bound by several dimeric molecules, enabling more-efficient inhibition. Here, we used 6-chlorotacrine and the tetrahydroquinolone moiety of huperzine A to design and synthesize a series of heterodimers that inhibit AChE at nanomolar potency. Specifically, compound 7b inhibits AChE with an IC50 < 1 nM and spares butyrylcholinesterase. Administration of 7b to mouse brain slices restores synaptic activity impaired by pirenzepine, a muscarinic M1-selective antagonist. Moreover, oral administration of 7b to C57BL/6 mice enhances hippocampal long-term potentiation in a dose-dependent manner and is detectable in the brain tissue. All these data supported that 7b is a potential cognitive enhancer and is worth for further exploration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.