Abstract

We consider a single-machine scheduling problem which arises as a subproblem in a job-shop environment where the jobs have to be transported between the machines by a single transport robot. The robot scheduling problem may be regarded as a generalization of the traveling salesman problem with time windows, where additionally generalized precedence constraints have to be respected. The objective is to determine a sequence of all nodes and corresponding starting times in the given time windows in such a way that all generalized precedence relations are respected and the sum of all traveling and waiting times is minimized. We present a local search algorithm for this problem where an appropriate neighborhood structure is defined using problem-specific properties. In order to make the search process more efficient, we apply some techniques which accelerate the evaluation of the solutions in the proposed neighborhood considerably. Computational results are presented for test data arising from job-shop instances with a single transport robot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.