Abstract
Further advances in the field of ultrafast magnetization dynamics require experimental tools to measure the spin and electron dynamics with element-specificity and femtosecond temporal resolution. We present a new laboratory setup for two complementary experiments with light in the extreme ultraviolet (XUV) spectral range. One experiment is designed for polarization-dependent transient spectroscopy, particularly for simultaneous measurements of magnetic circular dichroism (MCD) at the 3p resonances of the 3d transition metals Fe, Co, and Ni. The second instrument is designed for resonant small-angle scattering experiments with monochromatic light allowing us to monitor spin dynamics with spatial information on the nanometer scale. We combine a high harmonic generation (HHG) source with a phase shifter to obtain XUV pulses with variable polarization and a flux of about (3 ± 1) × 1010 photons/s/harmonic at 60 eV at the source. A dedicated reference spectrometer effectively reduces the intensity fluctuations of the HHG spectrum to below 0.12% rms. We demonstrate the capabilities of the setup by capturing the energy- and polarization-dependent absorption of a thin Co film as well as the time-resolved small-angle scattering in a magnetic-domain network of a Co/Pt multilayer. The new laboratory setup allows systematic studies of optically induced spin and electron dynamics with element-specificity, particularly with MCD as the contrast mechanism with femtosecond temporal resolution and an unprecedented signal-to-noise ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.