Abstract

A new trypsin-like serine protease was cloned from both a murine cytotoxic T lymphocyte and a human PHA-stimulated peripheral blood lymphocyte cDNA library. In both the mouse and human system, this transcript had a T cell- and NK-specific distribution, being detected in cytotoxic T lymphocytes (CTL), some T-helper clones, and NK, but not in a variety of normal tissues. T-cell activation with Con A plus IL-2 induced mouse spleen cells to express this gene with kinetics correlating with the acquisition of cytolytic capacity. Both the mouse and human nucleotide sequences of this gene encoded an amino acid sequence with 25-40% identity to members of the serine protease family. The active-site "charge-relay" residues (His-57, Asp-102, and Ser-195 of the chymotrypsin numbering system) are conserved, as well as the trypsin-specific Asp (position 189 in trypsin). We reviewed the evidence of this serine protease's role in lymphocyte lysis and proposed a "lytic cascade." We discussed the biological and clinical implications of a cascade, proposing these enzymes as markers for cytolytic cells and as targets for rational drug therapy. Genetic and acquired deficits in the lethal hit-delivery system are considered as a basis for approaching some immunodeficiency states, including severe EBV infections, T-gamma leukemias, and T8+ lymphocytosis syndromes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.