Abstract

A systolic power-sum circuit designed to perform AB/sup 2/+C computations in the finite field GF(2/sup m/) is presented, where A, B, and C are arbitrary elements of GF(2/sup m/). This new circuit is constructed by m/sup 2/ identical cells, each of which consists of three 2-input AND logical gates, one 2-input XOR gate, one 3-input XOR gate, and ten latches. The AB/sup 2/+C computation is required in decoding many error-correcting codes. The paper shows that a decoder implemented using the new power-sum circuit will have less complex circuitry and shorter decoding delay than one implemented using conventional product-sum multipliers.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.