Abstract

A systolic array architecture for image coding using adaptive vector quantization is presented. A basic systolic cell was designed with two modes of operation. In the forward mode, the cell executes the basic distortion operation, while in the reverse mode, the cell executes the centroid computation operation. Both modes co-exist in perfect synchronism. The systolic array module essentially consists of an array of L*N basic systolic cells connected in parallel and pipeline in the direction of the vector dimension, L, and codeword dimension, N, respectively. This architecture results in a speedup proportional to NL, and has the following advantages: there is no need for separate hardware to compute the new centroids; there is no need for a high speed interface to transfer the new centroids into the systolic array; and there are no delays involved in the computation and transfer of new centroids. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.