Abstract

For an arbitrary n × n matrix A and an n × 1 column vector b, we present a systolic algorithm to solve the dense linear equations Ax = b. An important consideration is that the pivot row can be changed during the execution of our systolic algorithm. The computational model consists of n linear systolic arrays. For 1 ≤ i ≤ n, the i th linear array is responsible to eliminate the i th unknown variable x i of x. This algorithm requires 4 n time steps to solve the linear system. The elapsed time unit within a time step is independent of the problem size n. Since the structure of a PE is simple and the same type PE executes the identical instructions, it is very suitable for VLSI implementation. The design process and correctness proof are considered in detail. Moreover, this algorithm can detect whether A is singular or not.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.