Abstract

Kidney fibrosis is a common process that leads to the progression of kidney diseases. We used an integrated computational/experimental systems biology approach to identify upstream protein kinases that regulate gene expression changes in kidneys of HIV-1 transgenic mice (Tg26), which have both tubulo-interstitial fibrosis and glomerulosclerosis. We identified the homeo-domain interacting protein kinase 2 (HIPK2) as a key regulator of kidney fibrosis. HIPK2 was upregulated in kidneys of Tg26 and patients with various kidney diseases. HIV infection increased the protein level of HIPK2 by promoting oxidative stress, which inhibited SIAH1-mediated proteasomal degradation of HIPK2. HIPK2 induced apoptosis and expression of epithelial-mesenchymal trans-differentiation markers in kidney epithelial cells by activating p53, TGF-β/Smad3, and Wnt/Notch pathways. Knockout of HIPK2 improved renal function and attenuated proteinuria and kidney fibrosis in Tg26 as well as in other animal models of kidney fibrosis. We conclude that HIPK2 is a potential target for anti-fibrosis therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.