Abstract

In metal cutting process, size effects and edge effects have a significant influence on cutting forces and therefore on the machining performance. This paper facilitates those behaviors with different cutting tool geometry, i.e., round edge and chamfered edge, using analytical cutting force prediction models when turning Inconel 718 with round cutting inserts. Analytical methods used for different edge preparation are developed with the consideration of size effects and edge effects. Then, an attempt is made to analyze the cutting investigations of the influence of size effects and edge features. The cutting forces and edge forces are estimated with the modified Johnson–Cook constitute model considering the size effects and edge effects. Rounded edge coefficients and chamfered edge coefficients estimated with different analytical methods are used in calculating edge forces for rounded edged tools and chamfered edged tools, respectively. Simulations with finite element model (FEM) and cutting experiments are used to verify the proposed model. Finally, the detailed influences of size effects, edge geometries, and feed rate on the cutting forces are studied based on the proposed model and FEM simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.