Abstract

In this paper, we study different classes of generalized convex/quasiconvex set-valued maps, defined by means of the l-type and u-type preorder relations, currently used in set-valued optimization. In particular, we identify those classes of set-valued maps for which it is possible to extend the classical characterization of convex real-valued functions by quasiconvexity of their affine perturbations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.