Abstract

Understanding the reaction path and mechanism of chlorinated volatile organic compound (CVOC) destruction is important for designing efficient catalysts, especially for the application of noble metal-based materials. Herein, several typical noble metals, Ru, Rh, Pt, Pd, Au, and Ir, supported on γ-Al2O3 catalysts were synthesized by the hydrazine hydrate reduction method for 1,2-dichloroethane (1,2-DCE) elimination. Various character measurements were conducted, and the results suggest that the high-valence state of noble metals is beneficial for the 1,2-DCE reaction as it enables the enhancement of the mobility of the surficial active oxygen species of catalysts. Among the noble metals, Ru/γ-Al2O3 expresses superior catalytic reactivity, with a 90% pollutant conversion rate at 337 °C, and competitive CO2 selectivity, 99.15% at the temperature of total oxidation. The distribution of by-products and the degradation routes were analyzed online by GC-ECD and in situ diffuse reflectance infrared spectroscopy, which may provide helpful insight for the future application of noble metal-based catalysts for CVOC elimination in industrial fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.